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Optimization methodology for a river temperature monitoring network for the
characterization of fish thermal habitat
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ABSTRACT
A methodology for planning an optimized river water temperature monitoring network is pre-
sented. The methodology is based on sampling of the physio-climatic variability of the region to
be monitored. Physio-climatic metrics are selected to describe the study region, based on
principal component analysis. The sites to be monitored are then identified based on a
k-means clustering in the multidimensional space defined by the selected metrics. The metho-
dology is validated on an existing dense water temperature network in Haute-Savoie, France.
Different configurations of more or less dense network scenarios are evaluated by assessing their
ability to estimate water temperature indices at ungauged locations. An optimized network
containing 83 sites is found to provide satisfactory estimations for seven ecologically and
biologically meaningful thermal indices defined to characterize brown trout thermal habitat.

ARTICLE HISTORY
Received 22 January 2016
Accepted 22 July 2016

EDITOR
M. C. Acreman

ASSOCIATE EDITOR
not assigned

KEYWORDS
Monitoring network;
optimization; river water
temperature; trout habitat

1 Introduction

Water temperature patterns in rivers and streams are
crucial to define the quality of habitat, especially for
ectothermic organisms such as fish (Pörtner and Farrell
2008, Elliott and Elliott 2010). Over the past decade,
water temperature monitoring efforts have increased
worldwide, motivated in part by the cost-effectiveness
of modern temperature sensors and by the climate
change issue (Isaak et al. 2012, Hannah and Garner
2015). A growing literature uses the water temperature
data available in relation to thermal tolerances of fish
to investigate the potential effects of increasing tem-
peratures on suitable habitats (Eaton and Scheller 1996,
Mohseni et al. 2003, Mantua et al. 2010, Souchon and
Tissot 2012). In particular, many studies focus on the
conservation of native salmonids and the reduction of
their suitable thermal habitat, in association with the
risk of invasion by non-native species. However, most
studies use data from temperature monitoring net-
works that were not initially designed to study the
thermal habitat of the targeted fish species and focus
their analysis on simple thermal indices or single ther-
mal limits (i.e. temperature thresholds for survival).
While changes in water temperature continue to have
an impact on fish, the fish responses are complex and
difficult to predict (Graham and Harrod 2009). For a

single species, temperature limits and requirements
vary between life stages (Elliott and Elliott 2010) and
thermal changes result in direct effects on numerous
phenomena such as migration, spawning, embryonic
development, hatching, emergence, growth and life-
history traits (Jonsson and Jonsson 2009). Indirect
impacts such as the development of temperature-
dependent pathology are rarely investigated, whereas
these can lead to important mortality in populations
(Hari et al. 2006). Temperature data should thus pro-
vide accurate information on threatened species at
relevant scales to help field biologists and resources
managers to implement more effective conservation
strategies at the population level. Elliott and Elliott
(2010) showed the importance of accurately analysing
long-term data on water temperature for different life
stages of native salmonids in Europe in order to
improve predictive models. Seasonality and variability
in river thermal regimes need to be quantified using
long-term water temperature records (Olden and
Naiman 2010). Isaak et al. (2012) highlighted that
water temperature data to describe biological responses
at different life stages or across spatial distributions are
rare. The strategic planning and/or adaptation of exist-
ing stream temperature monitoring networks could
help improve water temperature modelling for aquatic

CONTACT Anik Daigle anik.daigle@ete.inrs.ca

*Present address: Science-management interface for biodiversity conservation, Thonon-les-Bains, France

HYDROLOGICAL SCIENCES JOURNAL – JOURNAL DES SCIENCES HYDROLOGIQUES, 2017
VOL. 62, NO. 3, 483–497
http://dx.doi.org/10.1080/02626667.2016.1242869

© 2016 IAHS

http://www.tandfonline.com


conservation purposes and to better prioritize manage-
ment interventions.

Implementing long-term water temperature moni-
toring in river networks with the aim of characterizing
thermal regimes temporally and spatially represents a
key challenge. Methods and tools regarding the opti-
mization of river temperature monitoring networks are
still lacking. Strategic planning of monitoring networks
in rivers was often conducted in the context of water
quality monitoring, for example for the systematic
measurement of the concentration of various contami-
nants (e.g. Strobl et al. (2006), Khalil et al. (2011), and
a review of the statistical approaches for water-quality
monitoring network redesign and assessment by Khalil
and Ouarda (2009)). In either case, the general idea is
to design a network based on a low-density/high-infor-
mation level trade-off.

Following this objective, our goal is to propose a
design strategy that allows the optimization of a water
temperature network based on the physio-climatic
characteristics of the region to be monitored. The
methodology presented can be used to optimize exist-
ing measurement networks, or to design a network for
non-monitored regions.

The methodology presented here is based on the
assumption that two rivers of similar size, sharing the
same physiographic characteristics, and subjected to
similar climatic conditions, will experience similar
thermal regimes. “Prototype” monitoring sites should
thus be selected such that they sample the whole phy-
sio-climatic variability of the river basins encountered
in a study area. Such a network should provide water
temperature-relevant information about any type of
basin and thus allow one to estimate, or interpolate,
water temperature at places where it is not measured,
using the information gathered at the monitoring sites.
The main steps in the application of the proposed
methodology are as follows:

(1) identify the physio-climatic attributes that best
represent all stream sub-basins in the study area;
and

(2) proceed with an optimal sampling of these
attributes.

This optimization method is tested on the existing
Haute-Savoie (HS, Fig. 1) stream temperature monitor-
ing network by evaluating different reduced-size net-
work scenarios in their ability to estimate water
temperature indices at ungauged locations. These
indices are descriptive statistics that were defined to
characterize brown trout (Salmo trutta) thermal habitat
(Section 2.1, Table 2).

2 Material and methods

2.1 Description of the study area

The method was tested in the Haute-Savoie (HS) area,
in the northern French Alps (Fig. 1). This area covers
4400 km2 between 350 and 4810 m in elevation. It is
drained by a hydrographic network of about 2800 km,
consisting of rivers, mountain streams and small
watercourses of 350–1800 m elevation, and bearing a
diversified fish population. Most rivers have a typical
nival (snow influenced) hydrological regime with sec-
ondary rain precipitation influence. High flows occur
in spring until May–June due to snowmelt, and in
autumn driven by precipitation, while low flows
occur during summer and winter. Some streams
show a glacial regime with high flows in summer
and baseflows in winter. Landscapes and land uses
are varied with regard to elevation, precipitation and
topography.

The HS area represents an interesting test area for
the methodology presented since it has a singular data-
set of continuous stream temperature data from a
dense monitoring network implemented over 7 years.
Stream temperature measurements in the HS area were
implemented by the Departmental Federation of
Fishing and Protection of Aquatic Ecosystems
(FDPPMA). The objective of the FDPPMA was to
monitor accurate thermal conditions at hourly intervals
in the different river systems inhabited by brown trout
during a full-year period. In HS, brown trout occupies
97% of the fish-bearing streams (2700 stream km).
Brown trout is a crucial species for recreational fishery
and represents considerable socioeconomic value. This
species is also of worldwide interest for conservation
issues, as either native or invasive species. In its native
range in Europe, five genetic lineages considered as
evolutionary significant units (ESU) have been identi-
fied (Laikre 1999, Bernatchez 2001). In each ESU,
remaining native populations are threatened by
human activities and their effects (non-native introduc-
tions, habitat degradation and fragmentation, overhar-
vest, climate change); hence, significant conservation
efforts are underway. Brown trout is one of the most
widely introduced fish species in the world and among
the most successful freshwater fish invaders. Brown
trout has been introduced outside its European native
range since the mid-1800s because of its sport-fishery
interest. It is listed as one of the “100 worst invasive
alien species” (Lowe et al. 2000), and its impact on
native fish communities is of increasing conservation
concern in many regions of the world where it was not
native. Finally, the thermal requirements at different
stages of the brown trout lifecycle are well defined and
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among the most documented (see Crisp 1996, and the
review by Elliott and Elliott 2010).

A monitoring programme was thus established
between 2003 and 2011 on different basins from year
to year, according to the number of available thermo-
graphs (Fig. 1, Table 1). Stream temperatures were
recorded using digital Onset Pendant Temperature
loggers, with 0.10°C temperature resolution and
±0.47°C accuracy at 25°C. Two suitable periods were
defined to deploy thermographs in streams: (a) from

early June to early July and (b) between mid-September
and mid-November. Thermographs were left in the
water for at least one year. Water temperature time
series were thus uninterrupted during crucial ecological
and biological periods for the target species, such as the
summer period showing the warmest values or the
embryonic development phase from egg fertilization
in winter to fry emergence in spring.

After assessment of the data quality, the database
used to test the optimization method included one
complete year of hourly stream temperature at 238
sites (Fig. 1, Table 1). This measurement network cov-
ers the full range of elevations and is representative of
the HS hydrographic network.

Hourly temperature data were used to calculate
seven annual thermal indices with biological or ecolo-
gical significance for different life stages of brown
trout, based on its thermal requirements. All indices
were computed at each site for the year surveyed.
Calculations of the thermal indices were performed

Figure 1. Hydrographic network of the Haute-Savoie area. Locations of the 238 water temperature measurement sites deployed
between 2003 and 2011 are shown, as well as the locations of the 49 Météo France weather stations.

Table 1. Number of monitoring sites installed
each year in the study area.
Year No. of monitoring sites

2003/04 19
2004/05 5
2005/06 26
2006/07 53
2007/08 64
2008/09 52
2010/11 19
Total 238
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with the MACMA Salmo Excel macro (Dumoutier
et al. (2010), in French, available free of charge upon
request at info@pechehautesavoie.com). The seven
indices are the mean annual temperature (MAT), the
maximum daily mean temperature (MDMT), the max-
imum 30-day mean temperature (M30DMT), the time
of suitable thermal condition for feeding (STCF), the
median hatching period time (H50), the median emer-
gence time (E50) and the suitable thermal conditions
for PKD infection (STCPKD). Table 2 presents the
seven thermal indices selected for the assessment of
brown trout habitat, with their rationale.

2.2 Selection of the physio-climatic attributes

The proposed general strategy is to select sites with
characteristics spanning the whole physio-climatic
variability of the study region. The first step is to
identify which physio-climatic attributes should be
sampled. These should (a) be known to have an impact
on water temperature, and (b) show an appreciable
variability across the region.

Drivers of river water temperature are now well
known and have been extensively reviewed (Caissie
2006, Webb et al. 2008). These include the atmospheric
conditions, stream discharge, topography, land use and
groundwater input. Forty-eight physio-climatic attri-
butes were extracted for all measurement sites from
the RHT digital hydrographical network (derived
from the Alti® digital elevation model and the
Carthage® hydrographical network of the French
Geographic National Institute; see Pella et al. 2012),
the Aurehly France climate database (Bénichou and Le

Breton 1987) and the Corine Land Cover 2000 database
(European Environment Agency 2004) (Table 3).

The sites to be included in the network should form
a set of “prototype sites” that represent all the physio-

Table 2. Thermal indices selected to describe the brown trout thermal habitat.
Index Abbreviation Rationale

Mean annual temperature MAT MAT and MDMT give indications about the overall thermal conditions and the thermal habitat suitability
for brown trout.Maximum daily mean

temperature
MDMT

Maximum 30-day mean
temperature

M30DMT Highest 30-day moving average of the daily mean temperatures. This index provides a good indicator of
seasonal extreme conditions during the warmest period. It was initially used to support a fish stream
typology (Verneaux 1973).

Time of suitable thermal
condition for feeding

STCF Total number of days showing a daily mean temperature between 4°C and 19°C. Globally, 4°C and 19°C
could be considered respectively as the lower and upper temperature limits for brown trout feeding
(Elliott and Elliott 2010).

Median hatching period time H50 H50 is the number of days taken for 50% of the eggs to hatch. We used the model proposed by Crisp
(1988, 1992) to provide the estimates. The starting date for the calculations is the standardized median
date of brown trout spawning (i.e. egg fertilization) in HS, fixed to 15 December (Champigneulle et al.
1988, 2003, A. Caudron (personal communication, 2014)).

Median emergence time E50 E50 is the number of days taken for 50% of the fry to emerge. The model of Elliott and Hurley (1998) was
used to provide the estimates. The starting date was the same as for H50.

Suitable thermal conditions for
PKD infection

STCPKD Proliferative kidney disease (PKD) is a parasitic infection of salmonids caused by Tetracapsuloides
bryosalmonae. Development and pathology of PKD are strongly influenced by temperature (for details,
see review from Okamura et al. 2011). This index takes the value 1 at sites showing at least 360
consecutive hours with a temperature equal to or greater than 15°C, and 0 if not. According to De
Kinkelin et al. (2002), this threshold was selected as a thermal condition conducive to fish infection by
parasites.

Table 3. Extracted physio-climatic attributes for each site sub-
basin or reach. The attributes selected for the definition of the
water temperature monitoring network are identified by an
asterisk (*).
Physiography (12 attributes) Source: RHT

Log of the drainage area*
Basin minimum, maximum and mean*
elevation (m)

Site altitude (m)
Basin minimum, maximum and mean
slope (°)

Slope at site (°)*
River length (km)
Headwater distance (km)
Strahler order

Land use (9 attributes) Source: Corine Land
Cover 2000

Hydrology (1 attribute) Source: RHT
Climate (26 attributes) Source: Aurelhy

France
Urban (km2)
Industrial or commercial (km2)
Cropland (km2)*
Permanent cultures (km2)
Forested (km2)
Shrub and herbaceous vegetation (km2)
Open areas (km2)
Wetlands (km2)
Water (km2)
Inter-annual mean (m3/s)
Total annual precipitation (1961–1990
normal) (mm)

Total summer precipitation (1961–1990
normal) (mm)

Air T° monthly minima (1961–1990
normal) (°C)

Air T° monthly maxima (1961–1990
normal) (°C)
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climatic ranges encountered in the region. The selec-
tion should thus focus on the physio-climatic attributes
that are the most contrasted in the area. Principal
component analysis (PCA; Dunteman 1989) was used
to compare the variance explanation capability of the
physio-climatic attributes for the 238 sites in HS.

The original set of attributes consists of the 48
extracted physio-climatic variables (Table 3), extracted
at all 238 water temperature recording sites. The first
principal component, PC1, defines the direction in the
48-dimensional space in which the 238 sites show the
largest distribution. Since the PCs are orthogonal, they
can be seen as the bases of a new coordinate system.
Typically, the space defined by the first two or three
PCs explains a high proportion of the dataset variance,
and PCA can thus be used as an effective way to reduce
the dimensionality of a dataset. Conversely, the relative
contribution to the first PCs can be used as a criterion
in selecting the attributes that are the most significant
in describing the dataset variability. Since the correla-
tion, or loading, of each original attribute to each PC is
quantified, PCA can also help identify correlated attri-
butes and thus reduce collinearity in a highly-dimen-
sioned problem (Olden and Poff 2003, Daigle et al.
2011). The physio-climatic attributes used to define
the optimized measurement network were thus selected
based on two criteria:

(1) the selected attributes must present relatively
high loading values on PC1 or PC2; and

(2) a group of attributes with similar PC1 and PC2

loading values is considered redundant and only
one member of the group should be selected.

2.3 Sampling of the physio-climatic attributes

Once the physio-climatic attributes are selected, sites
should be chosen so that the resulting network covers
all possible attribute values in the area. Sites were thus
selected using k-means clustering, an algorithm that
groups data vectors of attributes into k clusters by mini-
mizing the distance of each vector to its cluster’s centre.
Sites grouped into a given cluster thus have similar
physio-climatic attributes. To select k sites, k clusters
were first formed among all sites. To ensure that the
sites with the most extreme physio-climatic characteris-
tics were selected, the centres of the k clusters were
multiplied by a constant proportional to the span of the
considered attributes, resulting in a better coverage of the
attribute extreme values. Sites closest to these k “inflated”
centres made up the optimized measurement network.

2.4 Estimation of the thermal indices

The adequacy of the resulting network was evaluated
by its ability to estimate water temperature indices at
sites that were excluded from the network (or left-out
sites), given the physio-climatic attributes of the sites.

The six continuous-value indices (MAT, MDMT,
M30DMT, STCF, H50, E50) were estimated using step-
wise regression. Stepwise regression is a systematic
procedure that tests several models of multiple linear
regressions including or excluding each of the explana-
tory variables, according to their explanatory power. If
the hypothesis that the regression coefficient of a phy-
sio-climatic attribute is 0 cannot be rejected, this attri-
bute is included in the regression model; otherwise, it is
not used. The stepwise regression thus reduces the size
of the model where relevant, allowing less complex and
thus more stable models to be obtained.

Index STCPKD is related to threshold exceedences
and thus takes values of either 0 or 1. This categorical
index was modelled by a logistic regression (Pampel
2000), given a variable combining the most relevant
physio-climatic attributes. Following Chokmani and
Ouarda (2004) and Guillemette et al. (2011), this com-
bined variable was defined using canonical correlation
analysis (CCA; Thompson 1984). CCA is a statistical
method similar to PCA in that it makes linear combi-
nations of a set of attributes X to compute new linearly
independent composite variables U. The new variables
U, called canonical variates, are computed such that
they have maximum correlation to another set of line-
arly independent composite variates V, which are linear
combinations of a set of thermal indices Y. The first
variate in U is thus made up of the physio-climatic
information that is most correlated to the temperature
information contained in V. Indices included in Y are
chosen in relation to the thermal index to be modelled
(here, indices MAT, MDMT and the number of con-
secutive hours with a temperature equal to or greater
than 15°C).

The water temperature survey was conducted on a
7-year period; water temperature data available at the
monitoring sites are thus not all concomitant (Fig. 1,
Table 1). The inter-annual meteorological differences
to which the watersheds were subjected were taken into
account by including the annual daily mean air tem-
perature as another physio-climatic attribute for the
estimation of the thermal indices. The annual daily
mean air temperature was computed from daily data
measured at 49 Météo France stations (Fig. 1) and
linearly interpolated at each water temperature mea-
surement site, given its geographical coordinates and
elevation.

HYDROLOGICAL SCIENCES JOURNAL – JOURNAL DES SCIENCES HYDROLOGIQUES 487



The continuous-value thermal indices were esti-
mated in networks of sizes ranging from 5% to 95%
of the original network. The estimation errors on the
sites that were not part of the network (left-out sites)
were used to evaluate the interpolation performance of
the network. The performance measure used for the
continuous value indices was the root mean squared
error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yi � ŷi
� �2

vuut (1)

where yi and ŷi are the measured and estimated ther-
mal index values at site i and N is the total number of
estimations. Interpolation performance on the catego-
rical index STCPKD was also evaluated in optimized
networks of various sizes, using the percentages of false
positives (FP) and of false negatives (FN):

FP ¼ number of false positives
number of true negatives

(2)

FN ¼number of false negatives
number of true positives

(3)

The optimized networks with various densities were
evaluated by a bootstrap cross-validation: 100 networks
of a given density were sampled independently and the
thermal index estimated at all L left-out cases, resulting
in N = 100 × L estimated values. For the continuous-
value indices, the performance measures were then
computed given these 100 × L estimations. For the
categorical index, mean FP and FN values were com-
puted given 1000 random samplings of 100 Category 0
and 100 Category 1 cases among the 100 × L
estimations.

A flowchart illustrating the steps for the design of
the monitoring network and for the estimation of
thermal indices at sites not included in the network is
provided in Figure 2. Data processing and all analyses
including PCA, CCA, k-mean clustering and the
regressions were conducted using Matlab R2012a
(The Mathworks, Inc., Natick, MA, USA).

Figure 2. Steps for the design of the monitoring network and for the estimation of thermal indices at sites not included in the
network.
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3 Results

3.1 Selection of the physio-climatic attributes

Principal component analysis was performed given the
values of the 48 attributes at all 238 monitoring sites.
Most data variance is explained by the first two princi-
pal components, with PC1 explaining 67% of the var-
iance and PC2, 11%. Figure 3 shows each of the 48
attributes loadings on the first two PCs. Loadings mea-
sure the correlation between the attributes and the
(uncorrelated) PCs; attributes appearing at similar
locations in Figure 3 are thus positively correlated
(e.g. monthly minimum and maximum air tempera-
tures), whereas attributes separated by a 180° angle
with respect to (0, 0) are negatively correlated (e.g. air
temperatures and elevations. Important contributions
to PC1 include the attributes related to climate and
topography, while attributes related to the size of the
river (drainage area, headwater distance, river length,
module, Strahler order) have important loadings on
PC2. Most significant land use attributes appear to be
shrub/herbaceous vegetation, open and cropland areas,
with ±0.14 loadings on PC1. Four attributes were thus
selected according to the two criteria defined earlier.
The second criterion demands that the selected attri-
butes should be at large angular distances from each
other in the PC1–PC2 loadings graph. Selected attri-
butes, shaded in Figure 3, are:

● basin mean elevation
● log value of the drainage area
● slope at station
● cropland area

3.2 Sampling of the physio-climatic attributes

The modified (“inflated”) k-means clustering was per-
formed in the four-dimensional space of the four
selected attributes, with the number of clusters corre-
sponding to the number of sites to be selected. This
selection method was applied for sampling levels ran-
ging from 5% to 95% of the original network. All 238
sites are plotted in the log(DA)-mean altitude space in
Figure 4. The circled sites are an example of a 25%-
level selection (60/238 sites) based on the modified
k-means clustering. The same example (same 60-site
selection) is shown in Figure 5, where it can be seen
that the sampling method ensured a selection of sites in
every range for each of the four individual attributes
distributions.

3.3 Estimation of the thermal indices

The continuous-value thermal indices were estimated
given networks of sizes ranging from 5% (12 sites) to
95% (226 sites) of the original network. Estimation

Figure 3. PC1 and PC2 loadings of the physio-climatic attributes. The attributes selected for the definition of the water temperature
monitoring network are shaded.
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performances as a function of network density are
plotted for the continuous-value thermal indices in
Figures 6 and 7. Results obtained with a purely random
site selection are also plotted for comparison.

The distribution of the categorical index STCPKD
was found to be very much asymmetric, with STCPKD
equal to 0 for 80% of all sites, while only 20% were
categorized as 1. Such an unbalanced calibration data-
set can lead the logistic regression to biased estimates.
A post-sampling was thus made in the selected net-
works in order to rebalance the number of sites in each
category for calibration of the logistic regression.
Interpolation performance as a function of network
density is plotted for the categorical thermal index in
Figure 8. Plotted values are the mean FP and FN
percentage values computed from 1000 random sam-
plings of equal numbers (100) of Category 0 and 1 left-
out cases for 100 different networks selected indepen-
dently. Network sizes were limited such that at least 16
Category 1 sites were retained in the selected networks
for the calibration of the logistic regression (~35%
sampling of the original network), and a minimum of
8 Category 1 sites were left-out in order to compute FP
values (~80% sampling of the original network).

The RMSE estimation values tend to increase when
the number of stations is below ~50 sites for all con-
tinuous valued thermal indices, with lower increases
for the networks selected based on the k-means classi-
fication as compared with a random selection. In the
networks tested, STCPKD FP and FN values are stable
to ~20% and ~17%, respectively, with large standard
deviations (~4% for both FP and FN).

The ability of a single network to estimate all seven
indices was assessed by applying the proposed

methodology for the selection of 83 sites. This number
of sites was chosen to ensure that satisfactory estima-
tions could be obtained for all indices. More especially,
and as mentioned above, the calibration of the logistic
regression for the estimation of categorical index
STCPKD requires about 32 sites, of which half (~16
sites) should be of Category 1. Considering the propor-
tion of Category 1 sites in the whole dataset, the selec-
tion of 83 sites did allow 19 sites of Category 1 to be
retained. Table 4 summarizes the estimations RMSEs,
FP and FN obtained at the remaining sites for each
index. It must be noted that, for a given network, FP
and FN values depend on the Category 0 sites selected
for the calibration of the logistic regression. Values in
Table 4 are representative, but stand for one such
selection. The physio-climatic attributes that were
retained in the stepwise regression are listed for each
thermal index in Table 5.

4 Discussion

Several methodologies for the optimization of existing
monitoring networks have been proposed in the field
of hydrology (e.g. Husain 1987, Li et al. 2012, Alfonso
et al. 2013). These make use of historical data to assess
the best monitoring locations to maintain in order to
meet the minimum density/maximum information
level criteria. In general, water temperature is much
less monitored than flow, and dense networks such as
the one existing in HS are rare. The methodology
presented here can be used for planning a measure-
ment network from the beginning, as it does not
require historical data and is based rather on the phy-
siographical and climatic characteristics of the region.

Figure 4. Distribution of the 238 sites in the log(DA)–mean altitude space. Circles represent 25% of the sites selected using a
modified k-means clustering.
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Attributes other than the four selected could have
been chosen to describe the study region: for example,
monthly minimum and maximum air temperatures
have high PC1 loadings and either one could have
been selected instead of the mean basin elevation.
With the presence of important correlations in the set
of considered attributes, the dependence on the dataset
and presence of measurement errors, there is probably

no real best set of attributes. The selection should be
guided by the relevance of the attribute to explain the
variable of interest and by the variance explanation
proportion and low redundancy criteria mentioned
earlier, but one must keep in mind that correlation is
not a guarantee of a cause and effect relationship. The
final selection should thus also be based, when possible,
on expert knowledge and be physically and biologically

Figure 6. RMSE values computed from 100 different networks selected independently. Confidence intervals are the standard
deviation of the RMSE values computed from 1000 resamplings of 100 test cases. Values represented by empty symbols were
obtained using networks selected based on the proposed modified k-means clustering, while values represented by filled symbols
were obtained using randomly selected networks.

Figure 7. RMSE values computed from 100 different networks selected independently. Confidence intervals are the standard
deviation of the RMSE values computed from 1000 resamplings of 100 test cases. Values represented by empty symbols were
obtained using networks selected based on the proposed modified k-means clustering, while values represented by filled symbols
were obtained using randomly selected networks.
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meaningful. Here, the mean basin altitude was selected
as an easily accessible variable correlated to most air
temperature statistics. In a region with highly con-
trasted orography such as HS, elevation can also be a
measure of the proportion of groundwater flow. The
drainage area is related to the river size and therefore
to water volumes, as well as to water travel time, and
thus to the exposure to atmospheric conditions. Slope
at station is indicative of the time required for water to

flow along a reach and can thus be a measure of
exposure time to solar radiation. Stream slope also
affects the rivers hydraulics and thus thermal advec-
tion. Land use can also affect river water temperature
as it affects shading and soil humidity retention and
overland flow temperature. Cropland area was selected
as it is the most variable land use metric in HS region,
while being the least correlated with the three other
selected metrics. Other watershed/reach properties
identified as being related to water temperature in
other regions are the substrate type, which can be
related to stream order and potential hyporheic flow
(Johnson 2004), the proportion of the catchment that is
covered by lakes or forest (Moore 2006, Chu et al.
2010, Daigle et al. 2010), hillslope shading and orienta-
tion of the basin (Brown and Hannah 2008,
Hrachowitz et al. 2010).

Continuous value thermal indices were estimated
with quite different accuracies given the selected net-
works, as shown by the fairly large standard deviations
of the RMSE values. Best estimation accuracies were
obtained for index MAT in networks down to ~50
sites, with mean RMSE of 0.5°C, corresponding to 6%
of its range. Standard deviation on the RMSEs is about
0.06°C (Fig. 6). Worst estimation accuracies in contin-
uous indices were obtained for index STCF, with best
RMSE of 36 days in ~50-sites networks, corresponding
to 15% of the index range (Fig. 7).

Stepwise regression also allowed identification of
which physio-climatic attributes were useful in estimat-
ing each of the continuous-value thermal indices

Figure 8. Mean FP and PN on STCPKD values computed from 1000 resamplings of 100 Category 0 and 100 Category 1 cases
estimated given 100 different networks selected independently. The networks all included equal numbers of Categories 1 and 0
sites; values on the horizontal axis are thus the number of sites used to calibrate the logistic regression. Confidence intervals are the
standard deviations of the FP and PN values computed from the 1000 resamplings.

Table 4. Estimation of RMSE, FP and FN obtained at the sites
excluded from the optimized network. Indicated FP and FN
values are representative, but highly dependent on the subset
of Category 0 sites used to calibrate the logistic model.

Stepwise regression Logistic regression

Index RMSE FP FN

MAT (°C) 0.5 – –
MDMT (°C) 1.9 – –
M30DMT (°C) 1.6 – –
STCF (d) 37.4 – –
E50 (d) 14.8 – –
H50 (d) 12.4 – –
STCPKD – 18% 17%

Table 5. The physio-climatic attributes that were retained (1)
and excluded (0) in the stepwise regression.

Thermal
index

Mean
annual
air T°

Basin mean
elevation

Cropland
area

Drainage
area

Slope at
station

MAT 1 1 0 0 1
MDMT 0 1 0 1 0
M30DMT 0 1 0 1 0
STCF 1 0 0 0 0
E50 1 0 0 0 0
H50 1 1 0 0 1
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(Table 5). The mean annual air temperature was
retained in all models but one (index MDMT), while
the percentage of cropland area was never used. This
attribute was selected following the hypothesis that an
as exhaustive as possible description of the physio-
climatics of the HS watersheds would lead to a good
description of their thermal regimes. The observation
that this attribute did not help in estimating the
selected thermal indices is interesting and leads to a
number of remarks: (a) in cases where no river tem-
perature data are available when defining the measure-
ment network, it is not possible to predict with
certainty what physio-climatic attributes will be useful
in estimating selected thermal indices; (b) such a pos-
teriori information about the un-usefulness of an attri-
bute can allow managers to remove the attribute in the
choice of future monitoring sites, reducing the number
of constraints in the definition of the network; how-
ever, (c) other thermal and/or hydrological variables
might benefit from this coverage of the region based on
the percentage of cropland.

A stepwise regression establishes linear relationships
between explanatory and explained variables, and is
thus not suited to modelling a categorical index such
as STCPKD. This index was thus estimated by a logistic
regression defined by the first canonical variate com-
bining physio-climatic information of the selected sites.
The estimation performance of the model is quite
variable, as illustrated by the high standard variation
of both FP and FN values (Fig. 8). This high variability
is due to three factors: firstly, each tested network leads

to a different canonical space, in which the calibration
and validation sites will have different coordinates. For
a given set of sites, the canonical variates may lead to a
decent separation of the 0 and 1 STCPKD values, while
this separation may be less clear for another set, espe-
cially for low-density networks. Secondly, the number
of Category 1 sites left for validation gets lower as the
calibration set increases, and vice versa. Too few
Category 1 sites in the calibration set leads to uncertain
models, while a small number of Category 1 sites in the
validation set will lead to more variable validation
results. Thirdly, the estimation accuracy is also affected
by the fact that only a subset of Category 0 sites is used
to calibrate the logistic regression, in order to match
the number of Category 1 sites. FP and FN values
included in Table 4 are representative, but highly
dependent on the specific Category 0 sites subset cho-
sen to calibrate the logistic model.

Logistic regression outputs are continuous values
ranging from 0 to 1 that can be interpreted as the
probability of belonging to Category 1 (Fig. 9).
Typically, as in the present study, the classification is
performed by rounding outputs <0.5 to 0, and all
others to 1. Such quantified probabilities could how-
ever allow one to adjust the classification, i.e. to make
more or less conservative decisions. For example, a site
for which the index STCPKD is estimated to be 0.4
could be considered at risk and classified 1. Otherwise,
all sites estimated >0.8 could be prioritized in a man-
agement intervention. Figure 9 shows the logistic func-
tion model and validation (left-out) sites values for

Figure 9. Logistic function outputs at validation (left-out) sites for thermal index STCPKD. Sites of Categories 0 and 1 are identified
by circles. Thresholds of 0.4 (dashed line), 0.5 (solid line) and 0.8 (dotted line) are outlined. It can be observed that choosing a
threshold of 0.4 would result in nine additional sites in Category 1. Otherwise, a high-value threshold can be used to detect the
most at-risk sites (e.g. here, the 27 sites with P > 0.8).
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thermal index STCPKD, as a function of the first
canonical variate. It can be observed that choosing a
threshold of 0.4 would result in 10 additional sites in
Category 1. In contrast, 27 sites are located above the
0.8 threshold.

The methodology presented for the planning of
optimized water temperature monitoring networks
represents a useful tool for biological conservation
purpose. Here, an example applied to the thermal
habitat of brown trout in HS was presented, where a
15-year conservation programme of the remaining
native populations is in progress (Caudron et al.
2012). An optimized network of 83 measurement sites
is able to provide a performance estimation of the
brown trout thermal habitat using seven relevant
indices in the whole trout-bearing HS network. The
primary interest of such optimal planning for resource
managers is to define a “minimum” measurement net-
work able to give a reliable spatial distribution of the
thermal habitat. Such a network allows the estimation
of several indices with biological significance for dif-
ferent life stages. The combination of these different
indices provides valuable knowledge on the suitability
of the thermal habitat in the area. For this purpose, the
definition of the relevant thermal indices is a crucial
step. These should be representative of the entire life-
cycle, and include the most critical life stages and the
most significant thermal requirements for the studied
species. In the application presented here, the combi-
nation of the seven selected thermal indices gives a
reliable overview of the thermal habitat suitability for
brown trout in HS. They provide indications about the
overall thermal conditions of streams, the extreme con-
ditions during the summer season, the feeding and
growth suitability, the pathological risk caused by a
temperature-dependent infection, and the embryonic
development, which is the life stage with the lowest
thermal tolerance (Elliott and Elliott 2010). Other
indices such as the number of days reaching the
upper lethal limit (22–25°C) and the number of days
lying in the maximum conversion efficiency range (i.e.
growth efficiency in range 8–9°C) could also be of
interest. However, these indices could not be estimated
with satisfactory accuracy by the models used in the
present study, probably due to nonlinear relationships
among the selected physio-climatic attributes. More
flexible interpolation methods, such as kriging or arti-
ficial neural networks, could help estimate such indices.

This approach could be used as a powerful manage-
ment tool to detect current threats as well as potential
future risks. It allows one to acquire accurate knowl-
edge about thermal habitat suitability in a hydro-
graphic network for the species monitored, and which

life stage or biological function is primarily affected.
This tool could also be used to test hypotheses about
how thermal habitat may shift with water temperature
increases. Conservation and resource managers could
better identify areas that need interventions and then
prioritize their restoration and conservation efforts to
reduce thermal effects on vulnerable populations. In
order to improve conservation planning efficiency, we
suggest using optimized water temperature networks at
regional or local scales, where ranges of native popula-
tions or species to be conserved are well known and
where management actions can be implemented at
relevant levels on populations and habitats.

Recently, several authors have highlighted the need
to develop long-term monitoring of water temperatures
with full-year data and to optimize measurement net-
works in order to better characterize the seasonality
and the variability of thermal regimes (Olden and
Naiman 2010). Such long-term monitoring is needed
to improve predictive models on biological impacts of
possible future temperature conditions (Elliott and
Elliott 2010), to allow downscaling of the temperature
increase effects to local habitats and populations (Isaak
et al. 2010), and to understand the role of non-climate
factors on thermal regimes at regional, landscape and
stream scales, in order to prioritize conservation efforts
(Isaak et al. 2012). The optimization methodology pre-
sented here for stream temperature monitoring net-
works represents a useful advance, with operational
applications that match the needs of managers. In a
broader perspective, this methodology could be also
used to optimize other measurement networks, with
conservation concerns for aquatic, terrestrial or aerial
organisms.

5 Conclusions

The regional assessment of river thermal regimes
requires the monitoring of water temperature at ade-
quate spatial resolution. The strategic planning of a
water temperature monitoring network requires choos-
ing the number and locations of the monitoring sites.
An optimal measurement network may be defined by
minimizing its density while maximizing its informa-
tion content. While several network optimization
methodologies make use of historical data to assess
the best monitoring locations to maintain in an exist-
ing network, the methodology presented here can be
used for the planning of a measurement network from
the onset, i.e. without a priori knowledge of the vari-
able to be monitored, as it does not require historical
data and is based rather on the sampling of the physio-
graphical and climatic characteristics of the region. Its
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application in Haute-Savoie allowed the proposal of
optimized networks defined using four physiographical
metrics that have high variability in the region. Such
optimized networks were able to provide satisfactory
estimations for seven ecologically and biologically rele-
vant thermal indices throughout the region for brown
trout populations.
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